Муниципальное общеобразовательное учреждение средняя общеобразовательная школа № 9 г. Сердобска

Принята на заседании	Утверждаю.
педагогического совета	Директор МОУ СОШ № 9
Протокол №	О. А. Кудреватых
от «27» августа 2025 года	Пр. №195 от 27.08. 2025

Дополнительная общеобразовательная программа технической направленности «Увлекательный мир робототехники»

Возраст учащихся: 6-10 лет

Срок реализации: 2 год

Автор-составитель: учитель физики Дрыгин И.Р.

СОДЕРЖАНИЕ

Раздел 1. Пояснительная записка	3
Раздел 2. «Комплекс организационно-педагогических условий»	
2.1 Учебный план 1 года	8
Содержание учебного плана	8
2.2 Учебный план 2 года	
Содержание учебного плана	11
2.3 Методические материалы	14
2.4 Формы аттестации	
2.5 Оценочные материалы	16
2.6 Условия реализации программы	20
2.7 Список литературы	

Раздел 1. Пояснительная записка

Дополнительная общеобразовательная программа «Увлекательный мир робототехники» по содержанию является технической. По уровню освоения – дополнительной. По форме организации очной, по степени авторства – авторской.

Программа разработана в соответствии со следующими нормативно – правовыми документами: пунктом 3 части 1 статьи 34, части 4 статьи 45, части 11 статьи 13 Федерального Закона РФ от 29.12.2012 г. №273 «Об образовании в РФ»; Приказом Министерства просвещения Российской Федерации от 9 ноября 2018 г. № 196 «Об утверждении порядка организации осуществления образовательной деятельности ПО дополнительным общеобразовательным программам»; Письмом Минобрнауки 11.12.2006 N06-1844 «O Примерных требованиях программам Концепцией дополнительного образования детей"; развития дополнительного образования (утверждена распоряжением Правительства РФ от 04.09.2014 г.№1726 -p); Федеральным проектом «Успех каждого ребенка» (утвержден протоколом заседания комитета по национальному проекту «Образование» от 07.12.2018 г.№3); Письмом Минобрнауки России № 09-3242 от 18.11.2015 «Методические рекомендации по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы)»; муниципальными правовыми актами; Уставом, нормативными документами и локальными актами МОУ СОШ № 9 г. Сердобска.

Актуальность данной программы: педагогической практикой доказано, что эффективность обучения связана с мотивацией обучения. И мотивация напрямую зависит от понимания значения знаний. При разработке предпочтение отдается таким занятиям, которые имитируют жизненные ситуации. В учебной деятельности должны контролироваться изменения, которые произошли с учеником. Эти изменения являются актуальным

продуктом образовательной деятельности. Для самого ученика контроль над правильностью задания означает направление сознания к собственной деятельности. Контроль имеет ценность только тогда, когда он постепенно переходит в самоконтроль

Новизна программы заключается в создании и применении роботов, других средств робототехники и основанных на них технических систем и комплексов различного назначения.

Отличительная особенность данной образовательной программы заключается в том, что учащиеся смогут больше узнать об окружающем их мире через проектную деятельность.

Проектная деятельность позволит детям самостоятельно ставить перед собой цели и задачи, составлять технологическую карту по выполнению этого проекта и посредством проб и ошибок научиться выполнять различные задачи, которые будут встречаться им в будущем и в быту, и на работе, если они выберут техническую специальность.

Педагогическая целесообразность:

Занятия построены на основных педагогических принципах:

- доступности (от простого к сложному);
- •межпредметных связей (занятия должны быть тесно связаны с уроками чтения, развития речи, математики, окружающего мира, истории);
 - систематичности и последовательности;
 - учет требований гигиены и охраны труда;
 - учет возможностей, интересов и способностей учащихся;
 - принцип разнообразия форм обучения;
 - принцип учёта индивидуальных особенностей учащихся.

Цель - формирование умений и навыков в сфере технического проектирования, моделирования и конструирования

Задачи:

Образовательные:

- Использование современных разработок по робототехнике в области образования, организация на их основе активной внеурочной деятельности учащихся
- Реализация межпредметных связей с физикой, информатикой и математикой
- Решение учащимися ряда кибернетических задач, результатом каждой из которых будет работающий механизм или робот с автономным управлением

Развивающие:

- Развитие у школьников инженерного мышления, навыков конструирования, программирования и эффективного использования кибернетических систем
- Развитие мелкой моторики, внимательности, аккуратности и изобретательности
- Развитие креативного мышления и пространственного воображения учащихся

Воспитательные:

- Повышение мотивации учащихся к изобретательству и созданию собственных роботизированных систем
- Формирование у учащихся стремления к получению качественного законченного результата
- Формирование навыков проектного мышления, работы в команде

Возрастные особенности детей, которым адресована программа:

В возрасте 6-10 лет продолжается психическое и физическое развитие ребенка. На развертывание всех видов детской деятельности начинают

оказывать сильное влияние собственные замыслы ребенка. Их полная реализация пока еще возможна лишь с помощью взрослого.

Игровые мотивы детской деятельности сохраняют своё значение. Теперь уже они реализуются в технических проектах, в реализации которых дети берут почти все главные роли на себя. У ребенка возникает потребность согласовать свои действия с действиями других, выполнять их ради достижения общей цели. Создаются условия для формирования дружеских отношений между детьми, проявления взаимопомощи и т.п.

Программа рассчитана на учащихся в возрасте 6-10 лет.

Срок реализации программы составляет 9 месяцев (36 недель) по 1 занятию два раза в неделю. Продолжительность одного занятия — 45 минут. Общее количество часов в год - 72 часа.

Планируемые результаты освоения программы:

В ходе обучения будут достигаться различные предметные и метапредметные промежуточные результаты:

Обучающийся научится:

- понимать смысл понятий: векторное изображение, растровое изображение, слой, трассировка, цветовая палитра, формирование и группировка объектов, векторное изображение, растровое изображение, слой, цветовая палитра, формирование и группировка объектов, фаска, вырез, физическое явление, физический закон, электрон;
- научиться объяснять и описывать физические явления;
- использовать измерительные приборы;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни;
- научиться объяснять и описывать физические явления;

- использовать измерительные приборы;
- понимать смысл физических величин: путь, скорость, сила тока, напряжение, электрическое сопротивление, электрическая проводимость;
- научиться объяснять и описывать физические явления;
- выражать результаты измерений и расчетов в единицах Международной системы;

- представлять результаты измерений с помощью графиков и чертежей;
- применять разнообразные приёмы при решении той или иной задачи.
- представлять результаты измерений с помощью макетов выполненных в 3D редакторе;
- применять разнообразные приёмы при решении той или иной задачи.
- проводить несложные доказательные рассуждения;
- применять разнообразные приёмы при выводе того или иного физического закона.

Раздел 2. «Комплекс организационно-педагогических условий» 2.1 Учебный план 1 года

№		Количество часов			Формы
П/п Название раздела П/п	Всего	Теория	Практика	аттестации/ контроля	
1	Вводное занятие. Техника безопасности	1	1	-	Опрос
2	Векторная графика	15	8	7	Опрос/ Показ
3	Электроника	8	4	4	Опрос/ Показ
4	Ввод в программирование через Scratch	4	4	-	Опрос/ Показ
5	Программирование и сборка роботов Lego Mindstorms	44	7	37	Опрос/ Показ

Содержание учебного плана

В ходе обучения будут достигаться различные предметные и метапредметные промежуточные результаты:

- 1) В ходе изучения вводного занятия обучающийся научиться:
 - правилам поведения в кабинете
 - инструктажу по технике безопасности
 - правилам поведения при чрезвычайных ситуациях

- 2) В ходе изучения векторной графики обучающийся научится:
 - понимать смысл понятий: векторное изображение, растровое изображение, слой, трассировка, цветовая палитра, формирование и группировка объектов;
 - научиться объяснять и описывать физические явления;
 - использовать измерительные приборы;
 - использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

- представлять результаты измерений с помощью графиков и чертежей;
- применять разнообразные приёмы при решении той или иной задачи.
- 3) В ходе изучения электроники обучающийся научится:
 - понимать смысл понятий: физическое явление, физический закон, электрон;
 - понимать смысл физических величин: путь, скорость, сила тока, напряжение, электрическое сопротивление, электрическая проводимость;
 - научиться объяснять и описывать физические явления;
 - использовать измерительные приборы;
 - выражать результаты измерений и расчетов в единицах Международной системы;
 - использовать приобретенные знания и умения в практической деятельности и повседневной жизни: Обучающийся получит возможность научиться:
 - проводить несложные доказательные рассуждения;

- применять разнообразные приёмы при выводе того или иного физического закона.
- 4) В ходе изучения программирования обучающийся научится:
 - понимать смысл понятий: физическое явление, физический закон, электрон;
 - понимать смысл физических величин: путь, скорость, сила тока, напряжение, электрическое сопротивление, электрическая проводимость;
 - научиться объяснять и описывать физические явления;
 - использовать измерительные приборы;
 - выражать результаты измерений и расчетов в единицах Международной системы;
 - использовать приобретенные знания и умения в практической деятельности и повседневной жизни.
- 5) В ходе изучения проектной деятельности обучающийся научится:
 - понимать понятия: технологическая карта, план задание
 - работать в команде
 - самостоятельно находить и устранять проблемы в действиях робота

- представлять результаты измерений с помощью графиков и чертежей;
- применять разнообразные приёмы при решении той или иной задачи.

2.2 Учебный план 2 года

No		Количество часов			Формы
п/п	Название раздела	Всего	Теория	Практика	аттестации/
		Decro	Теория	Практика	контроля
1	Вводное занятие. Техника	1	1	_	Опрос
	безопасности	1	1		onpoc
2	3D моделирование	9	3	6	Опрос/
					Показ
3	Электроника	10	4	6	Опрос/
					Показ
	Ввод в программирование				
4	через Scratch for Arduino	4	2	2	Опрос
	(S4A)				
	Программирование и сборка				
5	роботов «Future Robot	10	2	8	Показ
	World»				
5.2	Программирование на языке	38	6	32	Опрос/
	программирования Arduino				Показ

Содержание учебного плана

В ходе обучения будут достигаться различные предметные и метапредметные промежуточные результаты:

- 1) В ходе изучения вводного занятия обучающийся научиться:
 - правилам поведения в кабинете
 - инструктажу по технике безопасности
 - правилам поведения при чрезвычайных ситуациях

- 2) В ходе изучения трехмерной графики обучающийся научится:
 - понимать смысл понятий: векторное изображение, растровое изображение, слой, цветовая палитра, формирование и группировка объектов, фаска, вырез;
 - научиться объяснять и описывать физические явления; использовать измерительные приборы;
 - использовать приобретенные знания и умения в практической деятельности и повседневной жизни.

- представлять результаты измерений с помощью макетов выполненных в 3D редакторе;
- применять разнообразные приёмы при решении той или иной задачи.
- 3) В ходе изучения электроники обучающийся научится:
 - понимать смысл понятий: физическое явление, физический закон, электрон;
 - изучить электрокомпоненты: источник питания, резистор, лампочки, диоды, светодиоды, термисторы, фоторезисторы, потенциометры, реостаты;
 - научиться объяснять и описывать физические явления;
 - использовать измерительные приборы;
 - выражать результаты измерений и расчетов в единицах Международной системы;
 - использовать приобретенные знания и умения в практической деятельности и повседневной жизни: Обучающийся получит возможность научиться:
 - проводить несложные доказательные рассуждения;

- применять разнообразные приёмы при выводе того или иного физического закона.
- 4) В ходе изучения программирования обучающийся научится:
 - понимать смысл понятий: физическое явление, физический закон, электрон;
 - понимать смысл физических величин: путь, скорость, сила тока, напряжение, электрическое сопротивление, электрическая проводимость;
 - научиться объяснять и описывать физические явления;
 - использовать измерительные приборы;
 - выражать результаты измерений и расчетов в единицах Международной системы;
 - использовать приобретенные знания и умения в практической деятельности и повседневной жизни.
- 5) В ходе изучения проектной деятельности обучающийся научится:
 - понимать понятия: технологическая карта, план задание
 - работать в команде
 - самостоятельно находить и устранять проблемы в действиях робота

2.3 Методические материалы

При реализации программы используются различные методы обучения:

- словесные рассказ, объяснение нового материала;
- наглядные демонстрация иллюстративного материала;
- практические апробирование новых знаний на знаний.

Организация работы - групповая. При этом основным принципом является сочетание на занятиях двух видов деятельности для учащихся: игровой и учебной. Начало работы по разделу включает знакомство с теоретическим материалом. Затем следует практическая часть занятия: освоение учебной группой изученного материала при работе за компьютером или при сборке проекта.

Формами организации деятельности учащихся на занятиях:

- групповая;
- в подгруппах.

Методы:

- словесный;
- наглядный;
- игровой;
- практический.

Формы подведения итогов реализации программы: участие в школьных и городских соревнованиях.

2.4 Формы аттестации

Основное оценивание результатов обучения происходит в конце учебного года в мае во время «Битвы роботов». На данном выступлении ребенок покажет большинство своих полученных знаний посредством выступления со своим роботом.

При этом, на этом этапе важно оценивать только знания обучающегося и его способность этими знаниями пользоваться и оперировать в экстренных ситуациях. Для симуляции этих экстренных ситуаций будет использоваться «Битва роботов».

Также, во время оценивания важно учитывать:

- индивидуальные возможности ребёнка;
- особенности соревновательной обстановки, в которой будет находиться обучающийся;
- особенности проведения самой «Битвы роботов», а именно способность оперативно реагировать на резкое изменение ситуации на "поле боя", способность быстро выявить поломку и исправить её, способность придумать исправления/улучшения собственного робота.

Оценивание будет происходить в устной форме. Проводиться он будет с целью дополнить недостающие знания по изучаемому разделу, и чтобы удостовериться в полученных знаниях учениками.

2.5 Оценочные материалы

Робототехника - это инструмент, который устанавливает прочные основы системного мышления, связи между информатикой, математикой, физикой, рисованием, технологиями, наукой c научно-техническим творчеством. Внедрение технологий образовательной робототехники в учебный процесс способствует формированию личностных, нормативных, коммуникативных без сомнения, И, когнитивных универсальных образовательных действий, которые являются важной составляющей ФГОС.

Занятия по робототехнике дают хорошие знания на будущее, вызывают научно-техническому творчеству. Заметно учеников интерес способствуют целенаправленному выбору профессии инженерного Робототехника направления. полностью выполняет эти задачи. Запрограммированный робот как новый инструмент обучения может улучшить качество учебного процесса, повысить интерес учащихся к обучению в целом и к отдельным предметам, тесно связанным робототехникой. Использование детьми в практике теоретических знаний, полученных по математике или физике, приводит к более глубокому пониманию основ, закрепляет приобретенные навыки, формируя образование в его лучшем понимании.

Ожидаемый результат:

- 1. Расширение знаний в области робототехники.
- 2. Снижение уровня технической неграмотности учащихся.
- 3. Привитие интереса к прикладной физике.
- 4. Получение знаний в области практической робототехники.
- 5. Осознанное понимание необходимости изучения физики как науки, имеющей большое практическое значение.
- 6. Привитие необходимости получения практических навыков сборки и конструирования электронных устройств.

Ожидаемые результаты и способы определения результативности:

Основными личностными результатами, формируемыми при изучении робототехники в основной школе, являются:

- -ответственное отношение к информации с учетом правовых и этических аспектов ее распространения;
- -развитие чувства личной ответственности за качество окружающей информационной среды;
- -способность увязать учебное содержание с собственным жизненным опытом;
- -конструирования и робототехники в условиях развивающегося общества;
- -готовность к повышению своего образовательного уровня; конструирования и робототехники.

Метапредметные результаты освоения учебного курса:

Регулятивные УУД:

- -понимать, принимать и сохранять учебную задачу;
- -планировать и действовать по плану;
- -контролировать процесс и результаты деятельности, вносить коррективы;
- -адекватно оценивать свои достижения;
- -осознавать трудности, стремиться их преодолевать, пользоваться различными видами помощи.

Познавательные УУД:

- -осознавать познавательную задачу;
- -читать, слушать, извлекать информацию, критически её оценивать;

- -понимать информацию в разных формах (схемы, модели, рисунки, переводить её в словесную форму;
- -проводить анализ, синтез, аналогию, сравнение, классификацию, обобщение;
- -устанавливать причинно-следственные связи, подводить под понятие, доказывать и т.д.

Коммуникативные УУД:

- -аргументировать свою точку зрения;
- -признавать возможность существования различных точек зрения и права каждого иметь свою;
- -уметь с достаточной полнотой и точностью выражать свои мысли; владеть монологической и диалогической формами речи;
- -быть готовым к общению и сотрудничеству со сверстниками и взрослыми в процессе образовательной, общественно-полезной, учебной и исследовательской, творческой деятельности.

Предметные результаты:

У обучающихся сформированы:

- -правила безопасной работы;
- -основные понятия робототехники;
- -основы алгоритмизации;
- -знания среды программирования
- -умения подключать и задействовать датчики и двигатели;
- -навыки работы со схемами.

- -собирать базовые модели роботов;
- -составлять алгоритмические блок-схемы для решения задач;

- -использовать датчики и двигатели в простых задачах;
- -программировать;
- -использовать датчики и двигатели в сложных задачах, предусматривающих многовариантность решения.

2.6 Условия реализации программы

Занятия проводятся кабинете, отвечающим В санитарнотребованиям (сухое, теплое, просторное, гигиеническим хорошим искусственным И естественным освещением), оборудованном ДЛЯ теоретических и практических занятий. Занятия проводятся только в помещении.

Материально-техническое обеспечение.

Техническое оборудование:

- комплекты робототехники LEGO Mindstorms;
- комплекты робототехники Future Robot World
- мультиметры;
- паяльники;
- компьютеры с предустановленным программным обеспечением;
- лазерный ЧПУ станок;

Учебно-методическое обеспечение:

- использование передового опыта по изучаемой проблеме;
- использование свежего программного обеспечения для работы на занятиях.

Кадровые условия. Образовательную деятельность программы «ОФП» осуществляет педагог, имеющий высшее педагогическое образование.

2.7 Список литературы

- 1. Боголюбов А.Н., Популярно о робототехнике. 1989
- 2. Брага Н., Создание роботов в домашних условиях. 2007
- 3. Бровкова Б.В., Системы искусственного интеллекта в машиностроении. Учебное пособие. 2004
- 4. Вильямс Д., Программируемый робот, управляемый с КПК. 2006
- 5. Вильямс Дж., Программируемые роботы. Создаем робота для своей домашней мастерской. 2006
- 6. Воробьев Е.И., Промышленные роботы агрегатно-модульного типа. 1988
- 7. Дрыгин И.Р., Бакалаврская работа на тему: "Методические возможности факультативных занятий по робототехнике в достижении метапредметных результатов обучения в школе". 2019
- 8. Жимарши Ф., Сборка и программирование мобильных роботов в домашних условиях. 2008
- 9. Игошев Б.М., Кибернетика в самоделки. 1978
- 10. Козырев Ю.Г., Промышленные роботы. Справочник. 1988
- 11. Ловынь Д., Создаем робота-андроида своими руками. 2007
- 12. Накано Э., Введение в робототехнику. 1988
- 13. Панфилов Ю.В., Оборудование производства интегральных микросхем и промышленные роботы. 1988
- 14. Предко М., 123 эксперимента по робототехнике. 2007